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Analysis of secondary instabilities of natural convection in a shallow cavity heated 
from a side has been carried out. For mercury with Prandtl number equal to 0.027 
analysis of the primary instabilities by linear theory shows that an instability sets in 
as transverse cells a t  Grashof number equal to 9157.6. Instability resulting in 
oscillatory longitudinal rolls is also possible, their critical Grashof number being 
equal to 10608.4. The secondary instabilities of the equilibrium states of transverse 
cells for mercury have been determined. The results show roughly that stable 
transverse cells with wavelength shorter than the critical become unstable by 
subharmonic resonance, but the instability for longer cells sets in by a combination 
resonance. The instability as longitudinal oscillatory rolls reappears at larger values 
of Grashof number, although slightly delayed by the presence of the transverse cells. 

1. Introduction 
The characteristics of natural convection in a shallow cavity heated from a side 

have been under study during the past twenty years owing to the connection of this 
kind of flow to those in atmospheres, estuaries, ventilation of buildings, and growing 
of crystals. Here we consider its secondary instabilities. The work on the primary 
instabilities of this convective flow was begun by Hart (1972), who discovered a 
parallel flow solution for it in the limiting case of an infinitely shallow cavity and 
drew attention to its relationship to Hadley circulation in the atmosphere. He found, 
using linear theory, that the instability sets in, either as stationary transverse cells, 
or as oscillatory longitudinal rolls, depending on the value of the Prandtl number. In 
a later study Hart (1983) reconsidered the stability of Hadley circulations, now with 
a free surface or with insulated thermal conditions for the top and bottom plates. The 
stability analysis of the longitudinal rolls was taken up also by Gill (1974), who 
related his findings to the observations by Hurle (1966) and Hurle, Jakeman & 
Johnson (1974) that oscillatory flows exist in melts in the containers used to grow 
semiconductor crystals, and that oscillations in concentration are responsible for 
striations in the crystals grown in this way. 

The stability calculations were repeated by Roux, Bontoux & Henry (1984) and by 
Kuo et al. (1986). They corrected some inaccuracies in the earlier results and in 
subsequent studies the structure of both the transverse cells (Laure 1987; Kuo & 
Korpela 1988) and longitudinal rolls (Laure 1987; Wang & Korpela 1989) were 
investigated. Actually, the primary stability had already been completely analysed 
by Gershuni, Zhukhovitskii & Myznikov (1974), but their paper had been overlooked 
by the later workers. 

An important secondary instability analysis that bears on our study was carried 
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out by Nagata & Busse (1983) for a flow of a fluid with a vanishing Prandtl number 
Pr in an inclined cavity. Despite the flow being heated in a different way, the 
instability of this flow takes place identically to that discussed here, if the Prandtl 
number is set to zero. The effects on secondary instability of having the Prandtl 
number equal to  that of air (Pr = 0.71) were considered by Chait & Korpela (1989) 
for natural convection in a vertical cavity. 

Related flows in free shear layers, that also have inflexional velocity profiles, have 
been studied by Kelly (1967) in a seminal paper that stresses the importance of 
parametric resonance as a mechanism for secondary instability. Later studies by 
Pierrehumbert & Widnall (1982) and Klaassen & Peltier (1989), based on Floquet 
theory, further elucidate the pairing of Kelvin-Helmholtz billows and the latter also 
takes into account the density stratification. 

Experimental studies of the flow in a shallow cavity include those of Hart (1983) 
and Hung & Andereck (1988). Both used mercury as a working fluid and found 
oscillations similar to those identified by Hurle (1966). In  order to relate the theory 
and the experiments to each other, the results given here are for flow of mercury in 
a cavity with insulated top and bottom boundaries. It has turned out that low- 
Prandtl-number flows have the richest structure and are from the point of view of 
crystal growth the most important technologically. For them the primary stability 
analysis predicts a transition to  transverse cells whenever the Prandtl number is less 
than 0.033. For larger values of Pr the secondary flow consists of oscillatory 
longitudinal rolls. For mercury, with Pr = 0.027, the transverse cells appear at 
Grashof number equal to 9157.6 and the onset of oscillatory longitudinal rolls at the 
slightly larger value Gr = 10608.4. In the studies of a flow in a vertical cavity Nagata 
& Busse (1983) and Chait & Korpela (1989) found that the transverse cells in that 
case soon become unstable by the mechanism of subharmonic resonance. We 
expected the same to  be true here and thus undertook the determination of the 
stability of the transverse cells for mercury in the range of Grashof numbers between 
the onset of transverse cells and longitudinal rolls. 

2. Formulation 
Natural convection in a shallow cavity as shown in figure 1,  with top and bottom 

boundaries made of insulating material, is considered. A Newtonian fluid is assumed 
to occupy the cavity which is heated from its right side. A right-handed coordinate 
system is fixed to the cavity in such a way that the x-axis points in the direction of 
the background temperature gradient and y-direction is perpendicular to the two 
horizontal solid boundaries and opposite to gravity. The z-coordinate is in the 
direction of the span, which is taken, as x, to  be of infinite extent. 

The flow is assumed to  be governed by the continuity, the Boussinesq form of the 
Navier-Stokes equations, and the thermal energy balance. These are 

v .  v =  0, 

a V / a t + G r ( V . v )  V =  - G ~ V P + T ~ + V V ,  

aT/at + Gr( V .  V )  T = 1/Pr V2T.  (2-3) 

In  these equations V ,  T ,  and P are the non-dimensional velocity vector, temperature 
and pressure. These variables have been put into a non-dimensional form by dividing 
lengths, velocities, time, and pressure by H ,  U, = gysH3/v,  H 2 / v  and p q ,  
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FIQURE 1. A sketch of a shallow cavity. 

respectively, where H is the cavity height, g is the gravitational acceleration, s is the 
background temperature gradient, y is the coefficient of volumetric expansion and, 
v is the kinematic viscosity. The temperature is measured above the mean 
temperature of the two endwalls and is scaled by the factor sH. The parameters 
Gr = U, H l v  and Pr = v/K are the Grashof and Prandtl numbers, respectively. In  the 
definition of Prandtl number K is the thermal diffusivity. 

2.1. Base j b w  

Since both x- and z-directions are taken to be infinitely long, the ends do not influence 
the flow. That is, we are only concerned with the central region of this cavity. With 
this idealization, the flow in the central part of the cavity is strictly parallel and Hart 
(1972) has shown that for insulated top and bottom boundaries the solution is given 
by 

u, = ) y ( y 2 - 4 ) ,  (2.4) 

Tb = ~++$'rGry(y~-$~+&). (2.5) 

The subscript b is appended to the x-component of the velocity and the temperature 
to signify that these variables represent the base flow. 

2.2. Primary flow stability and the secondary j b w  
The shear flow described by (2.4) and (2.5) is known to go unstable at  sufficiently 
large values of the Grashof number. We have calculated the neutral states for 
mercury with Pr = 0.027 and show them in figure 2. A t  the onset of instability steady 
transverse cells set in at Gr = 9157.6. The periodicity in the x-direction is given at the 
critical state by the wavenumber a = 2.7. The maximum amplification rates at  
supercritical states occur at a slightly lower value of wavenumber, but the deviation 
is so slight that one cannot use it with any confidence as a guide to determine whether 
the wavelength increases or decreases as the amplitude of convection becomes larger. 
Direct numerical calculations by Drummond & Korpela (1987) for a flow in a finite 
cavity show, however, that the wavelength increases slightly. 

On the left side of figure 2 the contour lines show that longitudinal modes could set 
in at  Gr = 10608.4 with /3 = 0.7. No contour lines were drawn beyond Gr = 18000, 
which is the reason why white areas appear in the plot. The bi-modality of the 
instability is very clear, for the valleys and peaks in the plot are distinct. 

In order to carry out the secondary instability analysis of the transverse cells, the 
secondary flow was first calculated numerically. To this end each of the variables in 
the governing equations (2.1)-(2.3) were split into a part representing the base flow 
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FIGURE 2. The contour lines of Grashof number a t  neutral states of mercury with Pr = 0.027. 
The contour lines, beginning from Gr = 9500, are in increments of 500, with the last for 
Gr = 18000. 

FIGURE 3. Stream functions for (a) secondary flow and (b) total flow, and isotherms for (c) 
secondary flow and (d )  total flow of a moderately supercritical case for Pr = 0.027, a = 2.7 and 
Gr = 11 700. The solid lines denote positive values and the dashed lines negative values. 

and another that describes the secondary flow. The solution method follows that of 
Marcus (1984). We have used it previously (Kuo & Korpela 1988; Wang & Korpela 
1989; Chait 6 Korpela 1989) and found i t  to give excellent accuracy. By forcing the 
flow to be two-dimensional the appearance of longitudinal rolls is prevented. This 
way one can study the stability of the equilibrium states even under conditions that 
might favour the longitudinal rolls. One of these equilibrium states is shown in figure 
3 at the condition Gr = 1 1  700 and the wavenumber a = 2.7. 
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3. Secondary instability 
To carry out the analysis of the $econdary flow stability, the variables are again 

split into base flow and secondary flow parts. In addition a small perturbation is 
added. This split then takes the form 

(3.1) 

where the variables with subscript b satisfy the governing equations for the base flow 
and the ones with subscript s satisfy those for the s e c d a r y  flow. At this stage both 
the base flow and the secondary flow variables aTe known functions of the 
coordinates, so their combination can be #ed a new base state and the linear 
stability analysis of this new flow. can be carried out ...* 

After substituting the variables in (3.1) into (2.1)-(2.3), subtracting the governing 
equations for the base flow and $he secondary flow from them, and neglecting 
products of disturbance quantities denoted by subscript p in (3.1), the following set 
of equations is obtained: 

1 u = U b + U S + U P ,  v = vs+vp,  w = w p ,  

p=pb+p,+pp, T =  T b + q + T p ,  

aup/ax + aV,/ay + awp/az = 0, (3.2) 

? (3.3) 

(3.5) 

(3.4) 

With insulated top and bottom boundaries, the boundary conditions to be satisfied 
are 

up = vP = wP = aTp/ay = 0 at y = &+, (3.7) 

with periodicity conditions in the x- and z-directions.. 

3.1. Floquet theory 
The coefficients of the unknown functions in (3.2)-( 3.6) governing the perturbations 
depend on the x- and y-coordinates only. Furthermore, some of these coefficients are 
periodic functions of x. It has been shown by Clever & Busse (1974) and others after 
them (for a review see Herbert 1988, who also points out the early work by Maseev 
1968), that Floquet theory is the proper tool to apply for the analysis of these types 
of equations. Its application shows that the x-dependence of the perturbation 
variables can be written as 

qp(x, y, z? t )  = eidsQ(X, Y ,  2, t ) ,  (3.8) 

where Q is a periodic function of x with the same spatial period as the secondary flow, 
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and d is a real number called the Floquet exponent. The periodicity of the secondary 
flow is characterized by the wavenumber a, which dictates the following form for the 
secondary flow variables : 

m-M 

m--M 
as(z7 Y) = C &m(y) eimas* (3.9) 

Since (3.2)-(3.6) are autonomous in z and t the perturbation variables can be written 
as 

n=N 

qp(x, y, z, t )  = x Q,(y) einax+idx+ibz+at. (3.10) 
n--N 

In this equation b is the wavenumber characterizing the z-dependence of a three- 
dimensional flow that may emerge as a result of the secondary transition. The 
corresponding wavenumber in the primary stability analysis was called ,8, the 
different symbols distinguishing whether primary or secondary instabilities are 
considered. The real part of the complex number a represents an amplification factor 
and its imaginary part an oscillation frequency. I n  the expansions (3.9) and (3.10) the 
indices m and n should, in principle, vary from minus to plus infinity. I n  a numerical 
study the series must be truncated to some suitable low value, which is determined 
by the requirements of accuracy and the size of the accessible memory in the 
computer used. The expansions (3.9) and (3.10), when substituted into (3.2)-(3.6) 
give equations that can be separated, owing to the orthogonality of the Fourier 
modes, into 2N+l coupled equations, one for each of the Fourier modes. This 
procedure leads to  an eigenvalue problem given by the equations 

i (d+na)  U,+DV,+ibW, = 0, (3.11) 

au, +Gr[V, Du,+ (U*o, ) ,  + (V*Do), +Gr[i(d+na) ub U, + (O*U,), + (V*Dv),] 

= - iGr(d + na) P, + [ D2 - (d  + - b2] U,, (3.12) 

aV,+Gr[(U*V,), + (V*DV),] +Gr[i(d+na) ub V, + (U*V,), + (V*DV),] 

= - Gr DP, + T, + [D2 - (d + na)' - b2] V,, (3.13) 

a W, + Gr[i(d + na) ub W, + (u* W,), + ( V* D W),] = - ibGr P, + [D2 - (d + 

Pr aT, + GrPr[(U,) + V, DT,] + CrPr[(U*TJ, + (V*DT),] 

+ Gr Pr[W + na) u, T, + ( u*T,), + ( V*DT),] = [D2 - (d  + 

- b2] W,, 
(3.14) 

- b2] T, , (3. 1 5) 

where D denotes dldy and an asterisk relates to one of the convolution products 

(3.16) 1 (&*Q)n = C QpQq, (Q,*Q)n = X iPaQpQq, 
p+ -n p+ -n 

IPl<dkl < N  Ipl ddlql bN 

(&*Qx)n = C i(d + aa) &p Qq. 
p+ -n  

lpl<dIql<N 

The resolution of the y-dependence of the perturbation variables is still needed. 
This is done by a K-term expansion in Chebyshev polynomials. As a result a 
5K(2N+1) matrix equation is obtained, the factor 5 arising from the complete 
system consisting of continuity, three components of momentum, and the energy 
equations. 
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3.2. Symmetry considerations 
From (2.1) and (2.2) a symmetry of the base flow can be established by a coordinate 
transformation as 

ub(y) = -ub(-y)7 T ( x , y )  = -T(-2, -y). (3.17) 

Similarly, the equations governing the secondary flow have solutions that obey the 
following centro-symmetry properties : 

'1 (3.18) 

Since the secondary flow is periodic in x, the periodic structure was shifted in such 
a way that the stagnation point at  the centre of a cell coincides with the origin of the 
coordinates. 

The governing equations of the secondary stability, defined by (3.2)-(3.6) are also 
seen to have certain symmetries. These are given by 

us(x,y) =-us(--,  -y), vs(x,y) = -v&-x, -34, 

T,(x7y) = - q - x ,  -?.I), P,(z,y) =P,(-x, 3). I 

(3.19) 

u,(x,y,z) =-up(-, -y,z), vp(x,y7z) =-vp(-x, - y , 4 ,  

Pp(z,y,4 =Pp(-x, -y,z), T,(x,y,z) =-Tp(-x, - y , a  

wp(x, y, 4 = w,( -5 ,  -y, 4, 

and 

(3.20) 

Following Klaassen BE Peltier (1989) the following results can be derived as a result 
of these symmetries. 

(i) If the eigenvalue B and a corresponding eigenfunction [U,(y), V,(y), 
W,(y), P,(y), T,(y)] are associated with the set of parameters (a, d ,  b ) ,  then B* and its 
associated eigenfunction [ U,* ( - y ) , V,* ( - y ) , W,* ( - y) , -P,* ( - y ) , T,* ( - y )] correspond 
to the same set of parameters. This means that in the original spectrum the 
eigenvalues are either real or they appear as complex-conjugate pairs. 

(ii) If B is an eigenvalue corresponding to ( a , d , b )  and the eigenfunction 
[U,(y), V,(y), W,(y),P,(y), T,(y)] corresponds to it, then is also an eigenvalue for 
( a , d ,  -b)  with an eigenfunction [U,(y), V,(y), - W,(y),P,(y), T,(y)]. This means that 
corresponding to an oblique wave with a wavevector inclined to the left of the x-axis 
there is a similar oblique wave with a wavevector inclined to the right by an equal 
amount. 

(iii) If r is an eigenvalue corresponding to ( a , d , b )  and the eigenfunction 
[U,(y), V,(y), W,(y),P,(y), T,(y)] corresponds to it, then B is also an eigenvalue for 
(-01, d ,  b )  with an eigenfunction [u-,(y), V-,(y), W-,(y),P-,(y), 5"',(~)].  

(iv) If B is an eigenvalue corresponding to ( a , d , b )  and the eigenfunction 
[U, (y) ,  V,(y), W,(y),P,(y), T,(y)] corresponds to it, then B is also an eigenvalue for 
(a, - d ,  b )  with an eigenfunction [ - U-,( -y), -V-,( -y), W-,( -y),P-,( -y), 
- T-,( -y)]. Properties (iii)-(iv) show that waves can appear in the flow that travel in 
oblique directions in such a way that they can be identified as right- or left-travelling 
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waves with respect to the x-direction. For stationary solutions these properties allow 
the interpretation of negative wavenumbers as being associated with waves that are 
shifted in phase 180' from the corresponding positive ones. 

(v) The Floquet expansion (3.10) is invariant under the transformation from 
(u,d,b) to (a,d+ka,b),  where k is an integer. This is a consequence of the sums 
extending to infinity, which allows a renumbering of the indices without affecting the 
form of the expansion. This means that oblique waves exist in the flow, not singly, 
but as an infinite set. When d is an integral fraction of a, the sum of such partial 
waves forms a periodic wave with a wavelength equal to 2nld. 

(vi) Properties (iv) and (v) show that v(a-d,b)  = v(d, b),  from which i t  follows 
that only the range 0 6 d 6 ;a need be considered. 

As emphasized by Klaasen & Peltier (1989) the parameter b specifies the 
periodicity of the perturbation in the spanwise direction, but a similar interpretation 
is not possible for the parameter d. For each value of d in the range -+a < d 6 &a 
there exists a discrete spectrum of wavevectors and the wavenumber of the partial 
wave associated with the index n in this spectrum is given by d + nu. In  such a wave 
system the relative amplitudes of the partial waves have fixed relations that can be 
determined from the components of the eigenfunctions. 

3.3. Tests of numerical resolution 
To carry out the secondary stability analysis the secondary flow was first determined 
by expanding the variables in the y-direction in a Chebyshev series with either 17 or 
33 collocation points. In  the x-direction the number of Fourier collocations used was 
either 16 or 32. This corresponds to M = 8 or 16 in (3.9). Most of the computations 
of the secondary flow were carried out  a t  the lower resolution. This was sufficient for 
an accurate determination of secondary stability characteristics. More notable 
differences were observed if a secondary flow that had not yet quite reached a steady 
state was used in the secondary stability calculation. 

With an adequately resolved steady secondary flow established the equations 
(3.1 1)-(3.15) were solved by a collocation method again using Chebyshev polynomials 
as expansion functions in y. This gives a 5K(2N+ 1 )  matrix governing the secondary 
stability of the flow. The eigenvalues of this matrix were determined by the complex 
QR-algorithm. The largest value used for N was 2, corresponding to five Fourier 
modes. Some of the elements of the matrix arise from the convolution sums. For 
these sums the number of Fourier modes needed from the secondary flow calculation 
is W+ 1. Thus a t  least nine Fourier modes ought to be used to resolve the secondary 
flow to get this resolution for the secondary stability calculation. As stated, 16 or 32 
Fourier modes were used to calculate the secondary flow. Of these 9 were kept for 
determining the secondary stability. 

Actually, it is possible to use fewer terms and still get the qualitative behaviour 
right. To test this, Chait & Korpela (1989) determined the growth rates by first 
resolving the secondary flow with 16 Fourier modes and using either one, three, or 
five of these to  represent the secondary flow in the stability calculation. Only the 
inclusion of five modes gives a consistent representation between the number of 
Fourier modes used from the secondary flow calculation and the three modes they 
considered for the perturbations. They also tested how the number of Chebyshev 
modes in the secondary flow calculation influences the results by varying K from 7 
to 17, while keeping five Fourier modes. Whenever K was greater than 13, they saw 
little reason to  increase i t  more. 

Further convergence tests were conducted. Using 17 Chebyshev and 5 or 9 Fourier 
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Lower resolution Higher resolution Nagata & Busse 

U Gr d b Qr Q1 Qr Qi Qr a1 

2.6 8000 
2.6 8000 
2.6 8250 
2.6 8300 
2.6 8500 
2.6 8580 
2.6 10000 
2.6 1OOOO 

0 2.0 -8.081 10.44 -8.148 10.47 -9.17 8.3 
1.3 2.0 -6.913 0 -7.086 0 - - 

1.3 1.5 0.9183 0 0.2079 0 - 

LBS - - - - - - 

0 1.6 -0.1246 14.57 -0.5411 15.05 - 
- - - - - LBO - 

0 2.0 8.173 23.00 7.132 25.44 7.5 26.25 
1.3 2.0 9.050 0 5.247 0 5+ 0 

TABLE 1 .  Comparison of the growth rate and oscillation frequency calculated with two resolutions 
and the calculation by Nagata & Busse (1983) for a vanishing Prandtl number. The lower 
resolution includes three Fourier modes in the x-direction and 17 Chebyshev modes in the y- 
direction. The higher resolution includes five Fourier modes and 17 Chebyshev modes. The Prandtl 
number used in our calculation is The lower bound for the Grashof number of the subharmonic 
resonance is denoted by LBS, and LBO, denotes the lower bound for the Grashof number of the 
oscillatory instability. 

modes to represent the secondary flow in a secondary stability calculation, 
comprising either three or five Fourier modes for the perturbations, the growth rates 
for Pr = were calculated in order to compare the results with those obtained by 
Nagata & Busse (1983) for a vanishing Prandtl number. The results are shown in 
table 1. They show that significant differences still exist between the results with five 
Fourier modes for the perturbation variables and those when three Fourier modes 
are used. It was the result of this test that led us to decide that the higher resolution 
was needed for the subsequent calculations. This gives a 425 x 425 matrix eigenvalue 
problem. To solve it takes 9.6 s on Cray XMP-28. This can be reduced by 30 % if the 
continuity equation is used to eliminate the z-component of velocity and the 
eigenvalues of the resulting 340 x 340 matrix are then found. 

The property (vi) introduced in the last section was neither exploited in the 
calculations of Chait & Korpela (1989), nor apparently in those of Nagata & Busse 
(1983). If it had been used, the figures for the growth rates in those studies would 
show the proper symmetries. The asymmetry was caused by using the range 
0 < d < a as the fundamental interval, rather than -4a < d < &x for determining the 
growth rates. In  the latter case the modes retained, when N is fixed, represent the 
2N+ 1 lowest ones. If the value of d is varied in the range 0 < d < a, then whenever 
d > ;a one higher-order mode is included in the truncated expansion at the expense 
of a lower-order one. This leads to inaccuracies, particularly because the series used 
are truncated at quite low order. After completion of few tests of this kind, the 
growth rates were calculated only for the interval 0 < d < +. 
4. Results 

The aim of this work was to determine the stability characteristics of the 
secondary flow. Since the secondary flow is two-dimensional and it was calculated as 
an initial value problem, disturbances that arise as a result of machine roundoff can 
serve as a source of instability. A stable calculation of the secondary flow thus 
indicates that the flow with the given wavelength of the secondary flow is stable to 
a class of two-dimensional disturbances with a wavelength that is an integral fraction 
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FIQURE 4. Stability regime of the two-dimensional transverse flow for Pr = 0.027. The outmost 
curve (a) indicates the results of a primary stability analysis. The region of stable flow is bounded 
by: ( b )  the Eckhaus instability boundary from below, (c) the subharmonic resonance from the right 
and (d )  the combination resonance from left. The boundary of the onset of the oscillatory 
instability (e) is also shown. 

of the fundamental wavelength of the secondary pattern. From this it does not 
follow, however, that the flow is stable to all two-dimensional disturbances that are 
smaller than the fundamental, because waves other than those whose wavelengths 
are an integral fraction of the fundamental wavelength do not fit properly into the 
fundamental interval. Thus it is possible that the flow could be unstable to classes of 
disturbances with wavelength smaller than the fundamental one. By considering a 
larger computational domain into which one can fit more than one period of a wave, 
one can in principle increase the class of disturbances which can be tested. Doing so 
one finds, however, that the primary instability mode that favours cells of the critical 
wavelength causes the flow in a sufficiently long cavity to break up into that cellular 
structure in which the wavelength is close to the critical one. 

It turns out that there are other instability mechanisms a t  work that limit the 
range of stable waves more than the mechanism just described. For this reason this 
kind of instability is not of the greatest concern. In  fact, the investigation can be 
limited to modes that have wavelengths close to the critical. Accordingly, with the 
critical wavenumber for mercury equal to 2.7, only the range 1.9 < a < 3.2 was 
considered and the Grashof number was varied in the range 9157 < Gr < 11 700, the 
lower end denoting the critical Grashof number of the primary instability. A 
summary of the investigation is shown in figure 4. It shows five neutral curves. The 
outermost one is the neutral curve of the primary instability, one shows the Eckhuus 
instability boundary, one the subharmonic resonance, and another is associated with 
combination resonance. The last curve, showing the onset of oscillatory instability, is 
above the others and does not directly come into a discussion of the range in which 
stable transverse cells can exist. 
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FIQURE 5. The growth rate for the Eckhaus instability as a function of b and d for QT = 10200 
and a = 3.2. The maximum growth rate is 2.847. 

4.1. Eckhus  instability 
It was shown by Eckhaus (1965) that a secondary flow can lose its stability by a 
three-wave interaction mechanism. Of the many possible wave interactions, the 
important one, which his theory addresses, is between the first harmonic of the 
fundamental and two so-called sideband waves, with wavelengths such that one is 
larger and the other smaller than the fundamental and with an average wavelength 
equal to the wavelength of the fundamental. A similar mechanism has been shown 
by Benjamin & Feir (1967) to be a t  work in water waves and in that context the 
instability goes by the name of the discoverers. It was Stuart & DiPrima (1978) who 
showed the connection between the Eckhaus and the Benjamin-Feir resonance 
mechanisms. These studies rely on perturbation methods which allow an amplitude 
equation to be derived. It shows how the low-order harmonics of the spatially 
periodic base flow interact with the sideband waves, and allows evolution of the 
sideband waves to  be followed. 

The Eckhaus instability is a two-dimensional one and thus corresponds to 
disturbances with b = 0. I n  figure 5 the growth rate of the least stable mode at 
a = 3.2 and Gr = 10200 is shown as a function of b and d .  This state is close to the 
right branch of the primary stability curve. From figure 5 it is seen that strongest 
decay is a t  d = +a, the regions of positive growth are located symmetrically about 
d = h, and that the two maxima are along b = 0. If on the interval &t < d < a the 
location of the maximum is called do, the other maximum is then located at 
d = a-do. The plot can be extended periodically to larger and smaller values of d and 
by reflection to negative values of 6. 

The results indicate that in a flow subjected to two-dimensional disturbances a 
countably infinite set of partial waves can grow. The growth, according to Eckhaus, 
is a result of a three-wave interaction and the principal interaction is among the first 
harmonic of the fundamental with the wavenumber 201, the upper sideband wave 
with the wavenumber 2a-d,, and the lower sideband wave with a wavenumber do. 
This interaction leads to the loss of stability of the fundamental and the growth of 
the sideband waves. Eckhaus theory shows that of the two waves in the amplified 

0-2 
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FIGURE 6. The growth rate for the Eckhaus instability and the subharmonic resonance as a 
function of b and d for Gr = 1 1  200 and a = 3.1. The maximum growth rate is 6.131. 

sidebands the wave in the lower sideband dominates. The wave with the maximum 
growth rate in the lower sideband has a wavenumber close to that of the critical 
wavenumber of the primary instability. This is true only for states that are not too 
close to the boundary of the Eckhaus curve, for exactly a t  the boundary the 
wavenumber of the sideband waves approaches that of the state tested for 
instability. Thus in general the flow tends to return to  what could be called its 
‘natural state’, characterized by the wavenumber do,  which is close to  the critical 
wavenumber of the primary instability. 

Reducing the wavenumber to 3.1 and increasing the Grashof number to  11200 
yields the amplification plot shown in figure 6. I n  comparing this to  figure 4 i t  can 
be seen that both the Eckhaus and the subharmonic mechanisms (discussed in the 
next section) manifest themselves a t  this state, the Eckhaus mechanism being the 
weaker of the two. 

The size and shape of the partial waves are shown in figure 7. I n  that figure the 
normalized eigenfunctions for different Fourier modes at Gr = 10200, a = 3.2, 
d = 0.6 and b = 0 are plotted. The lower sideband wave has an amplitude one order 
larger than the upper sideband wave, which matches the analysis by Eckhaus. The 
amplitude of the longest wave with a wavenumber equal to a-do is second largest, 
followed first by the upper sideband wave and then by the other shorter waves. 

The behaviour of the flow near the left branch of the Eckhaus curve is more 
complicated. There the maximum amplification rate of the growing waves does not 
occur a t  b =  0. The unstable waves are detuned modes in the sense that the 
wavenumbers a t  which the maximum growth takes place correspond neither to d = 0 
nor to d = $a, the two values that are singled out for favoured status owing to their 
common appearance in instability mechanisms. They are discussed further below. 
The Eckhaus curve drawn is for the onset of instability of waves with b = 0 and thus 
it corresponds to a strictly two-dimensional mechanism. 

The Eckhaus instability, in the end, does not have an important function for 
predicting the behaviour of an actual flow in a laboratory, for whereas in our 
theoretical study the wavelength could be chosen a t  will and we could this way carry 
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FIGURE 8. The growth rate for the subharmonic resonance as a function of b and d for 
Gr = 11 700 and a = 3.0. The maximum growth rate is 5.401. 

out a parametric study of waves of various wavelengths, in a laboratory this is not 
so readily accomplished. I n  fact, the naturally growing wave has a wavelength near 
the middle of the region of stable waves and by increasing the Grashof number the 
important secondary instability mechanism is the one that limits the transverse cells 
from above in figure 4. There are three curves that do this and it is to them that we 
now turn our attention. 

4.2. Subharmonic resonance 

Kelly (1967) was the first to note that an instability via subharmonic resonance is 
possible. He studied the stability of a shear layer in which this mechanism is a two- 
dimensional one. A three-dimensional subharmonic mechanism was discovered by 
Hertert (1983) for boundary-layer flows and, according to his theory, is responsible 
for the staggered pattern of lambda-vortices that have been identified in these flows. 
The same mechanism was identified by Nagata & Busse (1983) to  be at  work in 
natural convection in a vertical slot. 

The distinguishing feature of the subharmonic resonance is that a wave with a 
wavenumber equal to  ia is amplified the most. The amplification rates in figure 8 
show this. The maximum amplification rate corresponds to b = 1.35 and this value 
depends strongly on neither a nor Gr.  That the solution with a Floquet exponent 
equal to +a corresponds to a periodic solution with this wavenumber can be easily 
seen by substituting this value of d into (3.10) and combining terms. Doing so allows 
this equation to  be put into a form in which d is absent, a is replaced by &, and the 
index n by 2n + 1.  The periodic extension of the amplitude plot in figure 8 now shows 
that the subharmonic and its odd harmonics are amplified. These constitute one 
three-dimensional periodic wave that is stationary since the imaginary part of the 
growth rate is zero. 

We have plotted in figure 9 the eigenfunctions for Pr = 0.027, Gr = 11 700, 
d = $z = 1.5, and b = 1.35. The dominance of the subharmonic is clear from this 
figure. In  figure 10 the velocity vectors in the (z,y)-plane a t  different z-locations, 
obtained from set of eigenfunctions, show the form of the flow arising from 
subharmonic resonance. The structure of this flow can most simply be visualized by 
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FIQURE 10. Velocity vectors of the total flow on the (r, y)-plane for Gr = 11 700, d = +a = 1.5 
and b = 1.35. The distance between consecutive planes is uniform and equal t o  &. 

considering what the cell axes do in a plan view, i.e. on an (x, 2)-plane. If one lets the 
cell axes be described by a sine wave, assumes that all the axes lie on the midplane 
between the plates, and draws one of them on this midplane, then the next cell axis, 
located downstream by a distance n/a, is in the spanwise direction 180' out of phase 
with the former and its peaks are aligned with the valleys of the first one. Continuing 
this process by drawing the next one, similarly out of phase with the second one, 
gives a qualitative picture of the relative position of the cell axes. Although this 
simplified picture does not tell us how the cell axes migrate with regard to the y- 
position, it is in accordance with the observation of Herbert (1983) that in a 
boundary layer the staggered pattern of lambda-vortices fits the theory of 
subharmonic resonance. In  a confined flow as considered here this structure forms 
also as a result of the flow field being such that the variation of the variables in the 
z-direction is sinusoidal. Thus the cell axes have a tendency to be drawn together on 
one 2-plane and pushed apart one half of a wavelength later. This undulation 
produces a staggered pattern in a plan view. 

From figure 4 one sees that the subharmonic mechanism is important only on 
roughly the right half of the unstable states as defined by the neutral curve of the 
primary instability. On the left-hand side the curve identifying an instability arising 
from combination resonance limits the domain of stable transverse cells from above. 
Because we do not know how the wavelength of the transverse cells actually varies 
with the amplitude of convection, we cannot a priori determine the locus of states 
through which the system passes as the Grashof number is increased. This locus may 
cross the subharmonic branch, but it may equally well cross the curve marking the 
detuned modes that give rise to combination resonance. In the next section we 
discuss the characteristics of these modes. 
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FIQURE 11. The growth rate for the modes arising from combination resonance as a function of 
b and d for Gr = 11 500 and a = 2.6. The maximum growth rate is 2.002. 

4.3. Combination resonance 

On the left side in figure 4 the stable transverse cells lose their stability as the Grashof 
number is increased, with the instability setting in as a system of oblique waves. 
Regarding terminology, the fact that both d and b differ from zero suggests the name 
oblique modes. The symmetries in the base flow and the transverse cells lead to the 
occurrence of paired modes that are detuned by an equal amount, but in the opposite 
sense. These combined paired modes resonate with the harmonics of the secondary 
flow to bring about an instability (Herbert 1988). A sample plot of the amplification 
rates of these detuned modes is given in figure 11, for a = 2.6 and Cr = 11500. The 
maximum growth takes place near d = 0.59 and b = 0.88, and in symmetrical 
location about the d = $a line. Again because of the periodic extension of this plot for 
both positive and negative values of d and the extension of the figure by reflection 
to negative values of b, an infinite number of wave interactions can be identified. Of 
these the principle ones, in analogy with the Eckhaus mechanism, involve the waves 
with wavenumbers (2a-d0, - b ) ,  (do ,b) ,  and the first harmonic with wavenumbers 
( 2 4 0 ) .  The other similar set with the sign of b changed differs from this only by 
having the wavevectors of the corresponding waves inclined in the opposite direction 
of the x-axis than in the first set. Since the value of do is not necessarily equal to aln 
for some n, these waves do not in general form a periodic pattern. 

The normalized amplitudes of a set of eigenfunctions for different Fourier modes 
a t  a = 2.6, Gr = 11500, d = 0.52 and b = 0.8 are shown in figure 12. These are 
characterized by the disappearance of the dominance of a single mode. This is an 
interesting result, because it brings out the possibility that some other triad 
interaction may be as important as the one involving the upper and lower sideband 
waves. One such set consists of waves having wavenumbers (a-do, b,) and (do, -bo )  
interacting with the fundamental with (a,O). The reason for choosing this triad as 
possibly being important is that it involves waves longer than the fundamental and 
for that reason it should draw energy better from the mean flow than the very short 
waves which are generally fed from immediately larger modes. 

Close to the left branch of the Eckhaus boundary a different kind of combination 
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FIQKJRE 13. The growth rate for the modes arising from combination resonance as a function of 
b and a! for Qr = 10400 and a = 2.2. The maximum growth rate is 2.166. 

resonance dominates. The amplification plot for it is shown in figure 13 at the state 
Gr = 10400 and a = 2.2. At this state the region of positive growth includes the b = 0 
axis. The neutral states for this kind of instability were not traced out, since they are 
to the left of the curve of the more clearly defined combination resonance. 

Should the transverse cells lose their stability by a mechanism involving the 
combination resonance, the question of how these waves manifest themselves in an 
experiment is an important one. The theory indicates that the waves should again be 
stationary, for the most dangerous eigenvalues are purely real. Nevertheless, since 
the waves are oblique, in an experimental cavity of finite size the interaction of the 
boundaries may bring in completely new effects. Should the boundary interaction 
manifest itself as a loss of steadiness of the wave pattern, then this may be an 
explanation for the appearance of a low-frequency oscillation observed in the 
experiments of Hung & Andereck (1988). The fluid in the experiment may be trying 
to adjust itself into a pattern that fits the oblique waves into the cavity, but it cannot 
find the right form owing to the influence of the boundaries. The only evidence for 
this view at present is that, according to Hung & Andereck (1988), the power 
spectrum of the signal for the low-frequency oscillations is reminiscent of drifting 
large-scale structures. 

4.4. Oscillatory states 
In  figure 4 a stability boundary above which oscillatory states are possible is also 
plotted. Even if this curve lies above both the subharmonic curve and the one 
characterizing the combination resonance, it does not lie far above them. For this 
reason, and from what the experiments have shown, it must be considered. A sample 
amplification plot for the oscillatory states is shown in figure 14. Since the maximum 
amplification rate for these states occurs ford = 0 and d = a the oscillatory states are 
characterized by the wavenumber pair (a, b).  For a small amplitude of the transverse 
cells these modes have the characteristics of the longitudinal rolls that were identified 
in the linear stability analysis, the properties of which are discussed in Wang & 
Korpela (1989) and more fully in Wang (1990). The rolls are realigned by the 
presence of the transverse cells, but this does not influence their size, since the critical 
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FIGURE 14. The growth rate for the oscillatory instability as a function of b and d for 
Gr = 11 700 and a = 3.0. The maximum growth rate is 0.406 and the oscillation frequency is 
40.44. 

wavenumber falls into the same range of 0.7 < b < 0.8 as before. The oscillation 
frequency is also practically the same as given by the primary stability analysis. 
Based on the analysis and the experiments of Hung & Andereck (1988) i t  can be 
concluded that for the slightly supercritical states that have been investigated 
neither the presence of transverse cells, nor the staggered cell pattern arising from 
subharmonic resonance, nor an oblique wave system arising from the combination 
resonance, distort the base flow sufficiently to suppress this mode of instability, 

The influence of the transverse cells is a slight stabilization of the flow. This is 
evident from the neutral stability curve of the oscillatory modes having being bent 
upward at  the centre. In  the absence of transverse cells, these cells are longitudinal, 
and the primary stability theory requires their neutral states to be independent of a. 
Thus if the transverse cells were to have no influence on the instability of the 
oscillatory modes at all, their neutral curve in figure 4 would be a straight horizontal 
line. Near the neutral curve of the primary stability the onset of the oscillatory 
rolls matches exactly what the primary stability theory predicts, for the reason that 
for these states the amplitude of the transverse cells is nil. For supercritical states 
with a wavelength close to  the critical one for transverse cells, the flow is furthest 
removed from the neutral conditions and thus the amplitude of the secondary cells 
is largest. It is for these states that  the onset of the oscillatory modes has been 
delayed somewhat. 

In  figure 15 the amplitudes of a set of eigenfunctions are plotted at the state with 
Pr = 0.027, Gr = 11 700, a = 3.0, d = 0, and b = 0.8. As a result of the symmetry 
properties the eigenfunctions for positive n are reflections of those for negative n, the 
eigenfunctions being in general asymmetric. The mean with n = 0, however, must be 
symmetric. By using these eigenfunctions we can construct plots of various 
quantities associated with the flow. Figure 16 shows the three components of 
velocity, and the temperature on the planes of symmetry and the cavity midplane. 
Both the isolines of u-velocity and the temperature show an oblique pattern clearly, 
consistent with the orientation of the wavevector defined by (a, b)  = (3.0,0.8). Since 
the flow is time dependent the figures shown arc snapshots of the flow which evolves 
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FIGURE 16. Isolines of (a) u-component of velocity, ( b )  v-component of velocity, (c) w-component 
of velocity and (d )  isotherms for the oscillatory instability for Gr = 11 700, a = 3.0, d = 0 and 
b = 0.8. Two spatial periods in the x-direction are shown. 

periodically in time. With time fixed, however, the z-coordinate can be taken as a 
time-like variable and these figures are seen to be very similar to those in Wang & 
Korpela (1989). 

5. Conclusions 
In this paper we have shown that the transverse cells that develop in a convective 

flow in shallow cavity as a result of a primary instability become unstable by a 
secondary instability mechanism involving either a subharmonic resonance or as a 
combination resonance. At  somewhat larger values of the Grashof number an 
oscillatory instability appears, which is closely related to what the primary stability 
analysis predicts. In summary, then, if experiments could be carried out for mercury 
in a cavity that is very large in its horizontal extent, the primary instability would 
set in as steady transverse cells at Gr = 9157.6 and ct = 2.7. Provided that the 
wavelength of these cells does not change much with the amplitude of convection a 
secondary instability would set in as a set of detuned three-dimensional steady 
modes at  about Gr = 10500. If, however, the wavelength of the transverse cells 
decreases with amplitude, then the mechanism that brings about the secondary 
instability would be subharmonic resonance. If either of these instabilities could be 
suppressed, a longitudinal oscillatory instability would set in a t  about Gr = 11 400. 
The experiments of Hung (1989) suggest that such an oscillatory state is in fact 
reached, but not until Gr = 18490. We believe that the cause for the delay is the 
finite horizontal extent of the experimental cavity. That the oscillatory instability is 
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closely related to the one found from the primary stability analysis follows from the 
way in which the neutral curve of the oscillatory states approaches the neutral curve 
obtained from the primary stability analysis. Along the latter curve the amplitude 
of the transverse cells vanishes and thus the secondary instability analysis must (and 
it does) give results that are identical to those obtained by analysis of the base state 
alone. Away from the primary stability curve the secondary instability as oscillatory 
modes is only slightly delayed, indicating that the transverse cells do not 
qualitatively change the eigenvalue spectrum obtained from the primary stability 
analysis and that their quantitative influence on the stability of these modes is small. 

Although the experimental support for the existence of oscillatory instabilities is 
strong, the theory cannot explain the delay in the onset of these modes. Neither does 
the analysis presented here explain the appearance of low-frequency oscillations seen 
in the experiments at slightly supercritical Grashof numbers. Whether these are 
related to the modes that arise by subharmonic or combination resonance that then 
interact with a cavity of finite aspect ratio remains an open question. We plan to take 
this up by carrying out fully three-dimensional simulations in a finite cavity in the 
future. 
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